开发者社区 > 博文 > CDP技术系列(一):使用bitmap存储数十亿用户ID的标签或群体
分享
  • 打开微信扫码分享

  • 点击前往QQ分享

  • 点击前往微博分享

  • 点击复制链接

CDP技术系列(一):使用bitmap存储数十亿用户ID的标签或群体

  • jd****
  • 2024-01-17
  • IP归属:北京
  • 256浏览

    一、背景介绍

    CDP系统中目前存在大量由用户ID集合组成的标签和群体,截止当前已有几千+标签,群体2W+。

    大量的标签都是亿级别数据量以上,例如性别、职业、学历等均,甚至有群体中的ID数量达到了数十亿+。

    并且随着用户ID池的不断增加,标签和群体本身包含的ID数量也随之增加,如何存储如此多的数据,标签与群体之间的组合计算,是我们面临的挑战。


    二、问题描述

    如此大量的用户ID集合,虽然标签和群体的ID集合本质类似,但是都需要存储亿级别的ID数据,这就对存储结构提出较高的要求。

    这里拿群体举例,如果某群体包含1000W个用户ID,通过文本文件存储,大概需要150M,40亿的群体就达到了惊人的150*40*10=60000M,大约60G,而我们的群体数量已经达到了几W+,再加上标签数据,所需要的存储空间将不可接受。

    并且,数据的存储只是其中一个方面,后续针对标签和群体的组合计算,创建出更细粒度的ID包也是一个挑战。


    三、解决方案

    面对以上问题,CDP采用了Bitmap的思路来解决,不但解决了存储空间问题,而且Bitmap本身的交并差运算,能够很好的支持用户对不同标签和群体的组合计算,详细方案如下。


    1)Bitmap简介

    为了便于理解,首先介绍一下什么是bitmap。

    它的基本思想是用bit位来唯一标记某个数值,这样可以用它来记录一个数值没有重复的数据元组。并且每一条数据只使用一个bit来标识,能够大大的节省存储空间。

    比如,我想存储一个数值数组[2,4,6,8]。

    Java中如果用byte类型来存储,不考虑其他开销,需要4个字节的空间,一个字节8位,也就是4*8=32bit。

    倘若使用更大的数据类型,存储空间也会相应增大,如使用Integer(4字节),则需要4*4*8=128bit。

    而如果采用bitmap的思想,只需要构建一个8bit空间,也就是一个字节的空间来存储,如下图。

    2)用户ID池编码

    通过上文的例子,可以看到,使用Bitmap思想来存储,实际上每一个数据是一个bit,而且不能重复,这一点用户ID是符合的,没有重复的用户ID。

    由于bitmap里只能存0或者1来标识当前位是否有值,而用户ID确是一个字符串,这就需要将数十亿的用户ID进行唯一性编码,这个编码也就是我们常说的offset偏移量。

    每一个用户ID对应一个唯一的offset,目前已到数十亿,也就是说当前最大的偏移量是数十亿+,这部分由数据同学帮我们加工一张ID池表,其中包含了ID和offset的对应关系。这样,新注册的id,只要顺序增加offset值即可。

    下边是一个简单示意图,假设我有8个id,id1~id8,对应的offset编号为1~8。

    我要建一个只包含双数id的标签或群体,则我只需要将offset为2,4,6,8的位设为1即可。

    3)遇到问题

    有了存储的数据结构,还有id池,接下来就是具体实现了。

    提到Bitmap,首先想到的是Java中的一种实现方案BitSet,不过它存在两个问题。

    一是我们的id池已经到达几十亿+,已经超出了BitSet所能处理的范围,当前超出了2^32=4294967296


    另一个问题是,倘若我建一个包含两个id的群体,第一个offset是1,第二个offset是10000000,这种情况还是要创建一个1000wbit的空间来存储,并且只有两个bit位是1,其他的全为0,这显然造成了很大的空间浪费。

    也就是说,数据越稀疏,空间浪费越严重

    下方位BitSet扩容时的代码,由代码中也可以看到,默认扩容2倍,当需要的大小超过2倍时,则按照需要扩容。

        public void set(int bitIndex) {
            if (bitIndex < 0)
                throw new IndexOutOfBoundsException("bitIndex < 0: " + bitIndex);
    
            int wordIndex = wordIndex(bitIndex);
            expandTo(wordIndex);
    
            words[wordIndex] |= (1L << bitIndex); // Restores invariants
    
            checkInvariants();
        }
    
        private void expandTo(int wordIndex) {
            int wordsRequired = wordIndex+1;
            if (wordsInUse < wordsRequired) {
                ensureCapacity(wordsRequired);
                wordsInUse = wordsRequired;
            }
        }
    
        private void ensureCapacity(int wordsRequired) {
            if (words.length < wordsRequired) {
                // Allocate larger of doubled size or required size
                int request = Math.max(2 * words.length, wordsRequired);
                words = Arrays.copyOf(words, request);
                sizeIsSticky = false;
            }
        }
    
    

    当用户圈的群体特别稀疏时,有可能会造成很大的空间浪费,所以,我们需要使用一种能够压缩的高效的位图实现。


    4)RoaringBitmap压缩

    我们最终使用的是RoaringBitmap,一种高效的压缩位图实现,简称RBM。于2016年由S. Chambi、D. Lemire、O. Kaser等人在论文《Better bitmap performance with Roaring bitmaps》 《Consistently faster and smaller compressed bitmaps with Roaring》中提出。

    基本实现思路如下:

    以整型int(32位)为例,将数据分成高16位和低16位两部分,低16位不变,作为数据位Container,高16位作为桶的编号Container,可以理解为高位的Container中,存放了很多个低位Container。

    高低位计算示例:

    protected static char highbits(int x) {
      return (char) (x >>> 16);
    }
    
    protected static char lowbits(int x) {
      return (char) x;
    }
    

    比如,我要存放65538这个值,则高位为65538>>>16=1,低位为65538-65536*1=2,即存储在1号桶的2号位置,存储位置如下图:

    我们当前使用的RoaringBitmap版本为0.8.13,Container包含了三种实现:ArrayContainer(数组容器),BitmapContainer(位图容器),RunContainer(行程步长容器)


    关于Container的含义以及更详细的RoaringBitmap介绍可以参考如下文章:

    http://sd.jd.com/article/11577?shareId=12915&isHideShareButton=1

    https://blog.csdn.net/GGBOOMi/article/details/127576805

    http://sd.jd.com/article/24834?shareId=12915&isHideShareButton=1


    不过,上文中提到当前id池已经超过了整型所能标识的最大范围(2^32=4294967296),所以需要一个能够处理64位的实现,我们使用了RoaringBitmap包中支持64位的Roaring64NavigableMap。

    它的实现思路和32位的基本一致,分成了高32位和低32位两部分

    jar包引入方式:

    <dependency>
         <groupId>org.roaringbitmap</groupId>
         <artifactId>RoaringBitmap</artifactId>
         <version>0.8.13</version>
    </dependency>
    


    public void add(long... dat) {
        for (long oneLong : dat) {
          addLong(oneLong);
        }
     }
    
    public void addLong(long x) {
      int high = high(x);
      int low = low(x);
      …………
    }
    
    public static int high(long id) {
      return (int) (id >> 32);
    }
    
    public static int low(long id) {
      return (int) id;
    }
    

    bitmap位图操作方法:



    四、现状及展望

    目前,CDP画像的标签和群体均采用了RoaringBitmap的存储方式。人群和标签的交并差计算,生成更加精细化的人群就可以通过bitmap的操作来实现。

    有了良好的存储方式,下一步就是如何将存储在数据仓库的明细数据,加工成原始的标签或者群体,具体实现方案会在下一篇分享。