开发者社区 > 博文 > RALB负载均衡算法的应用
分享
  • 打开微信扫码分享

  • 点击前往QQ分享

  • 点击前往微博分享

  • 点击复制链接

RALB负载均衡算法的应用

  • jd****
  • 2023-06-07
  • IP归属:北京
  • 14040浏览

    一、背景

    搜索推荐算法架构为京东集团所有的搜索推荐业务提供服务,实时返回处理结果给上游。部门各子系统已经实现了基于CPU的自适应限流,但是Client端对Server端的调用依然是RR轮询的方式,没有考虑下游机器性能差异的情况,无法最大化利用集群整体CPU,存在着Server端CPU不均衡的问题。

    京东广告部门针对其业务场景研发的负载均衡方法很有借鉴意义,他们提出的RALB(Remote Aware Load Balance)算法能够提升下游服务集群机器CPU资源效率,避免CPU短板效应,让性能好的机器能够处理更多的流量。我们将其核心思想应用到我们的系统中,获得了不错的收益。

    本文的结构如下:

    1. RALB简介
      • 简单介绍了算法的原理。
    2. 功能验证
      • 将RALB负载均衡技术应用到搜索推荐架构系统中,进行功能上的验证。
    3. 吞吐测试
      • 主要将RALB和RR两种负载均衡技术做对比。验证了在集群不限流和完全限流的情况下,两者的吞吐没有明显差异。在RR部分限流的情况下,两者吞吐存在着差异,并且存在着最大的吞吐差异点。对于RALB来说,Server端不限流到全限流是一个转折点,几乎没有部分限流的情况。
    4. 边界测试
      • 通过模拟各种边界条件,对系统进行测试,验证了RALB的稳定性和可靠性。
    5. 功能上线
      • 在所有Server端集群全面开启RALB负载均衡模式。可以看出,上线前后,Server端的QPS逐渐出现分层,Server端的CPU逐渐趋于统一。

    二、RALB 简介

    RALB是一种以CPU均衡为目标的高性能负载均衡算法。

    2.1 算法目标

    1. 调节Server端的CPU使用率,使得各节点之间CPU相对均衡,避免CPU使用率过高触发集群限流
    2. QPS与CPU使用率成线性关系,调节QPS能实现CPU使用率均衡的目标

    2.2 算法原理

    2.2.1 算法步骤

    1. 分配流量的时候,按照权重分配(带权重的随机算法,wr)
    2. 收集CPU使用率:Server端通过RPC反馈CPU使用率(平均1s)给Client端
    3. 调权:定时(每3s)根据集群及各节点上的CPU使用率(窗口内均值)调节权重,使各节点CPU均衡

    2.2.2 指标依赖

    编号指标作用来源
    1IP可用IP列表服务注册发现和故障屏蔽模块进行维护
    2实时健康度IP可用状态实时变化,提供算法的边界条件RPC框架健康检查功能维护
    3历史健康度健康度历史值,用于判断ip故障及恢复等边界条件指标2的历史值
    4动态目标(CPU使用率)提供均衡算法的最直接目标依据Server端定时统计,RPC框架通过RPC返回
    5权重weight实时负载分发依据算法更新

    2.2.3 调权算法

    1. 初始化时,权重设为(默认为10000)
    2. 定时更新各IP权重
      • 计算集群平均CPU使用率:作为均衡目标)计算的范围为(0, 1],默认取值0.5
      • 进行调整,保证不超过设置的权重上下限,以控制权重差距。,默认取1.5;当时,不变,等价于
      • 权重的校准,防止集群权重整体变大或变小偏移,使权重回归

    2.2.4 边界处理

    边界1:反馈窗口(3s)内,如果下游ip没被访问到,其CPU均值为0,通过调权算法会认为该节点性能极好,从而调大权重

    处理:窗口期没有CPU反馈的IP()时,保持不变

    边界2:网络故障时,RPC框架将故障节点设为不可用,CPU和权重为0;网络恢复后,RPC框架将IP设置为可用,但是权重为0的节点分不到流量,从而导致该节点将一直处于不可用状态

    处理:权重的更新由定时器触发,记录节点的可用状态,当节点从不可用恢复为可用状态时,给定一个低权重,逐步恢复

    升高

    2.3 落地关键

    既要快又要稳,在任何情况下都要避免陷入僵局和雪崩,尤其要处理好边界条件

    算法要点:

    1. 公式中各依赖因子的更新保持独立的含义和更新机制,以维护算法的可靠和简洁
      • IP列表的更新由服务注册发现和RPC框架共同保证
      • RPC更新CPU
    2. 注意边界值的含义,边界值的含义需要区分连续值
      • CPU = 0,表示未知,不表示CPU性能好
      • w = 0,表示不会被分配流量,只有在不可用的情况下才为0;可用情况下,应该至少有一个较小的值,保证仍能触发RPC,进而可以更新权重
    3. 算法更新权重,不要依赖RPC触发,而应该定时更新

    三、功能验证

    3.1 压测准备

    ModuleIPCPU
    Client端10.173.102.368
    Server端11.17.80.2388
    11.18.159.1918
    11.17.191.1378

    3.2 压测数据

    指标RR负载均衡RALB负载均衡
    QPSServer端的QPS均衡从上图可以看出,Server端的QPS出现分层
    CPUCPU表现也比较均匀,维持在10%左右,不过相比于RALB,节点间CPU差距大些
    Server端CPU表现均匀,均维持在10%左右
    TP99延时稳定,存在一些差异延时稳定,存在些微差异,相对RR小一些

    由于机器性能差距不大,所以压测的CPU效果并不明显,为了使CPU效果更明显,给节点”11.17.80.238“施加起始的负载(即无流量时,CPU使用率为12.5%)

    指标LA负载均衡RR负载均衡RALB负载均衡
    QPS QPS极不均匀,而且流量倾斜严重,会出现流量全集中在一个节点上的现象
    QPS均匀
    QPS出现明显分层,其中QPS出现变化,是因为对“权重最大调整比例“进行了两次调整(1.5 → 2.0 → 2.5)
    11.17.80.238:125 → 96 → 79
    11.18.159.191:238 → 252 → 262
    11.17.191.137:239 → 254 → 263
    CPU

    CPU不是LA均衡的目标,所以跟QPS趋势一致,全集中单个节点上

    CPU出现明显分层,11.17.80.238的CPU明显高于其他节点

    1、刚开始压测,11.17.80.238的CPU高于其他两个节点,因为“权重最大调整比例“为1.5(相对于base,固定值为10000),达到了调整极限
    2、“权重最大调整比例“调整为2.0,节点间的差距变小
    3、“权重最大调整比例“调整为2.5,节点间的差距进一步变小
    TP99
    承接流量的节点延时是稳定的,由于存在节点接受的流量很低(几乎没有),这些节点的延时看起来波动就比较大,不过LA对于延时的效果应该是稳定的,因为大部分请求是以比较均衡的延时得到处理的。

    延时稳定,存在些微差异
    延时稳定,存在些微差异,相对RR小一些

    3.3 压测结论

    经过压测,RR和LA均存在CPU不均衡的问题,会因为机器资源的性能差异,而导致短板效应,达不到充分利用资源的目的。

    RALB是以CPU作为均衡目标的,所以会根据节点的CPU实时调整节点承接的QPS,进而达到CPU均衡的目标,功能上验证是可用的,CPU表现符合预期。

    四、吞吐测试

    4.1 压测目标

    RALB是一种以CPU使用率作为动态指标的负载均衡算法,能很好地解决CPU不均衡的问题,避免CPU短板效应,让性能好的机器能够处理更多的流量。因此,我们期望RALB负载均衡策略相比于RR轮询策略能够得到一定程度的吞吐提升。

    4.2 压测准备

    Server端100台机器供测试,Server端为纯CPU自适应限流,限流阈值配置为55%。

    4.3 压测数据

    通过压测在RALB和RR两种负载均衡模式下,Server端的吞吐随着流量变化的趋势,对比两种负载均衡策略对于集群吞吐的影响。

    4.3.1 RALB

    4.3.1.1 吞吐数据

    下表是Server端的吞吐数据,由测试发压Client端,负载均衡模式设置为RALB。在18:17Server端的状况接近于刚刚限流。整个压测阶段,压测了不限流、部分限流、完全限流3种情况。

    时间17:4017:4517:5218:1718:22
    总流量2270171511521096973
    处理流量982101010491061973
    被限流量1288705103350
    限流比例56.74%41%8.9%3.2%0%
    平均CPU使用率55%55%54%54%49%

    4.3.1.2 指标监控

    Server端机器收到的流量按性能分配,CPU保持均衡。

    QPSCPU

    4.3.2 RR

    4.3.2.1 吞吐数据

    下表是Server端的吞吐数据,由测试发压Client端,负载均衡模式设置为RR。在18:46 Server端的整体流量接近于18:17 Server端的整体流量。后面将重点对比这两个关键时刻的数据。

    时间18:4018:4619:5720:0220:0420:09
    总流量96710821149117212631314
    处理流量9279911024103610481047
    被限流量4091125136216267
    限流比例4.18%8.4%10.92%11.6%17.1%20.32%
    平均CPU使用率45%(部分限流)51%(部分限流)53%(部分限流)54%(接近全部限流)55%(全部限流)55%(全部限流)

    4.3.2.2 指标监控

    Server端收到的流量均衡,但是CPU有差异。

    QPSCPU

    4.4 压测分析

    4.4.1 吞吐曲线

    根据4.3节的压测数据,进行Server端吞吐曲线的绘制,对比RALB和RR两种负载均衡模式下的吞吐变化趋势。

    import matplotlib.pyplot as plt
    import numpy as np
           
    x = [0,1,2,3,4,5,6,7,8,9,9.73,10.958,11.52,17.15,22.7]
    y = [0,1,2,3,4,5,6,7,8,9,9.73,10.61,10.49,10.10,9.82]
      
    w = [0,1,2,3,4,5,6,7,8,9.674,10.823,11.496,11.723,12.639,13.141,17.15,22.7]
    z = [0,1,2,3,4,5,6,7,8,9.27,9.91,10.24,10.36,10.48,10.47,10.10,9.82]
      
    plt.plot(x, y, 'r-o')
    plt.plot(w, z, 'g-o')
    plt.show()

    4.4.2 曲线分析

    负载均衡策略RALBRR
    阶段一:所有机器未限流接收QPS=处理QPS,表现为y =x 的直线接收QPS=处理QPS,表现为y =x 的直线
    阶段二:部分机器限流不存在RALB根据下游CPU进行流量分配,下游根据CPU进行限流,理论上来讲,下游的CPU永远保持一致。所有的机器同时达到限流,不存在部分机器限流的情况。
    所以在图中,不限流与全部机器限流是一个转折点,没有平滑过渡的阶段。
    RR策略,下游的机器分配得到的QPS一致,由于下游根据CPU进行限流,所以不同机器限流的时刻有差异。
    相对于RALB,RR更早地出现了限流的情况,并且在达到限流之前,RR的吞吐是一直小于RALB的。
    阶段三:全部机器限流全部机器都达到限流阈值55%之后,理论上,之后无论流量怎样增加,处理的QPS会维持不变。图中显示处理的QPS出现了一定程度的下降,是因为处理限流也需要消耗部分CPURR达到全部限流的时间要比RALB更晚。在全部限流之后,两种模式的处理的QPS是一致的。

    4.5 压测结论

    临界点:吞吐差异最大的情况,即RALB模式下非限流与全限流的转折点。

    通过上述分析,可以知道,在RALB不限流与全部限流的临界点处,RR与RALB的吞吐差异最大。

    此时,计算得出RALB模式下,Server集群吞吐提升7.06%。

    五、边界测试

    通过模拟各种边界条件,来判断系统在边界条件的情况下,系统的稳定性。

    边界条件压测情形压测结论
    下游节点限流CPU限流惩罚因子的调整对于流量的分配有重要影响
    QPS限流符合预期
    下游节点超时Server端超时每个请求,固定sleep 1s请求持续超时期间分配的流量基本为0
    下游节点异常退出Server端进程被杀死直接kill -9 pid杀死进程并自动拉起,流量分配快速恢复
    下游节点增减Server端手动Jsf上下线jsf下线期间不承接流量
    Server端重启stop + start正常反注册、注册方式操作Server端进程,流量分配符合预期

    六、功能上线

    宿迁机房Client端上线配置,在所有Server端集群全面开启RALB负载均衡模式。可以看出,上线前后,Server端的QPS逐渐出现分层,Server端的CPU逐渐趋于统一。

    上线前后Server端QPS分布上线前后Server端的CPU分布

    参考资料

    1. 负载均衡技术
    2. 深入浅出负载均衡


    文章数
    1
    阅读量
    351

    作者其他文章