您好!
欢迎来到京东云开发者社区
登录
首页
博文
课程
大赛
工具
用户中心
开源
首页
博文
课程
大赛
工具
开源
更多
用户中心
开发者社区
>
博文
>
什么是 Flink SQL 解决不了的问题?
分享
打开微信扫码分享
点击前往QQ分享
点击前往微博分享
点击复制链接
什么是 Flink SQL 解决不了的问题?
1669877492_m
2024-07-05
IP归属:北京
100浏览
# 简介 在实时数据开发过程中,大家经常会用 Flink SQL 或者 Flink DataStream API 来做数据加工。通常情况下选用2者都能加工出想要的数据,但是总会有 Flink SQL 覆盖不了的问题,但 SQL 的易用性又难以让人释怀。所以有些场景在使用 FLink SQL 开始就与需要额外注意,下面就介绍一种多表关联时存在部分列更新(partial Update)场景,在 DataStream API 和 Flink SQL 开发时都容易忽视的情况而导致的问题。为了简化问题描述,采用了Flink SQL 来阐述此类问题。 # 场景介绍 多表关联时表 A 关联表 B, 表 A 具有pk1, field1, field2, field3字段,表 B 具有 pk2, field4, field5, field6 字段,表 A 通过 pk1 关联表B pk2。使用 Flink SQL 会如下实现: ```SQL CREATE TABLE jdq_source( pk1 INT, field1 STIRNG, field2 STIRNG, field3 STIRNG, PRIMARY KEY(pk1) NOT ENFORCED ) WITH(...); CREATE TABLE sr_sink( pk1 INT, field1 STRING, field2 STRING, field3 STRING, field4 STRING, field5 STRING, field6 STRING, PRIMARY KEY(pk2) NOT ENFORCED ) WITH (...); INSERT INTO C SELECT A.pk1,A.field1,A.field2,A.field3,B.pk2,B.field4,B.field5,B.field6 FROM jdq_source A INNER JOIN sr_sink B ON A.pk1 = B.pk2; ``` 上述实例中有明显特征:使用了Join 关联, 且需要注意的是写入的数据库 sink 是 StarRocks。StarRocks 存在如下特性:当表是主键表时是不支持部分列更新( Partial Update)的,实际上大部分时候大家都用的是主键表。 然后在一个SQL查询数据的接口就遇到了如下问题:每次从接口查询返回的结果都不稳定,同样的查询条件不同时机返回的结果不一样。SQL查询语句如下: ```SQL select C.field1,C.field2,C.field3 FROM C group by field1,field2,field3; ``` 为什么SQL查询的结果会不一致呢?起初排查原因发现 group by 返回结果有多条,而在SQL 中也没有使用 order by 对数据进行排序,所以导致了结果不稳定。后又排查为什么会出现多条结果呢?于是怀疑 field1, field2, field3 有不符合预期的数据。如: 20240530, 2, 3 20240530, 2, null 20240531, 2, 4 其中第2条是多余的,不应该出现。结果发现可能是如下原因导致的:这3个字段 filed1, field2, filed3 在StarRocks数据库中会一直在变化,不停的写入新值。导致 SQL 查询时可以查到 field3 为 null 的数据。 为什么field3为不断变化呢?究其原因是:StarRocks 主键表不支持部分列更新(Partial Update)。当field3 为null时,同样会被写入 StarRocks。我们在通过JDQ读取表A field1, field2, field3 数据给表C写入数据时,当JDQ 消息队列中表A的记录存在乱序场景且field3 字段可能为null时,最终写入StarRocks的field3 字段会出现时而为null,时而不为null。 所以SQL查询接口中 group by的结果会出现不稳定。 # 总结 1. 为什么在开发的时候当时没有发现 StarRocks 主键表这个问题呢?原因:1. 大家所关注的部分列更新,多数是关注insert into table_C(field1, field2, field3) 中不包含的字段field4,field5...等被更新为null,而当前场景是会把 field3 为null的值也写入SR数据库中,这不是我们期望的结果。2.表A作为主表,通常不会出现开始field3有值后来又没有值(null)的场景。出现这个现象大概率是因为上游JDQ消息队列中的数据乱序了,导致field3 为null的后出现了。而这种问题又比较难发现。 2. 什么情况下会出现此类问题呢?写入的数据库不支持部分列更新场景时会出现。如StarRocks, Doris。因为MySQL, ES,ClickHouse的部分表引擎支持部分列更新,所以在MySQL, ES,ClickHouse中不会出现。 3. 同理在 DataStream API 中如果表 A,表 B 关联后的数据直接写入StarRocks 的话,也会出现此类问题。 以上这个问题在 Flink SQL 中无法解决,在 Flink DataStream API 中可以模拟部分列更新来避免此类问题。具体方法:在DatStream 任务中增加一个MapState, 用来在新数据到来时从MapState拿出缓存的数据,并和新到来的数据进行合并,来实现部分列更新功能,最后再写入 StarRocks。 虽然问题不是Flink SQL导致的,但是上面的问题可以通过Flink DataStream API来规避。
上一篇:托寄物智能识别——大模型在京东快递物流场景中的应用与落地
下一篇:使用mybatis切片实现数据权限控制
1669877492_m
文章数
3
阅读量
70
作者其他文章
01
Flink State 状态原理解析
一、Flink State 概念State 用于记录 Flink 应用在运行过程中,算子的中间计算结果或者元数据信息。运行中的 Flink 应用如果需要上次计算结果进行处理的,则需要使用状态存储中间计算结果。如 Join、窗口聚合场景。Flink 应用运行中会保存状态信息到 State 对象实例中,State 对象实例通过 StateBackend 实现将相关数据存储到 FS 文件系统或者 Roc
01
基于图遍历的Flink任务画布模式下零代码开发实现方案
前言提交一个DataSteam 的 Flink应用,需要经过 StreamGraph、JobGraph、ExecutionGraph 三个阶段的转换生成可成执行的有向无环图(DAG),并在 Flink 集群上运行。而提交一个 Flink SQL 应用,其执行流程也类似,只是多了一步使用 flink-table-planer 模块从SQL转换成 StreamGraph 的过程。以下是利用Flink的
01
什么是 Flink SQL 解决不了的问题?
简介在实时数据开发过程中,大家经常会用 Flink SQL 或者 Flink DataStream API 来做数据加工。通常情况下选用2者都能加工出想要的数据,但是总会有 Flink SQL 覆盖不了的问题,但 SQL 的易用性又难以让人释怀。所以有些场景在使用 FLink SQL 开始就与需要额外注意,下面就介绍一种多表关联时存在部分列更新(partial Update)场景,在 DataSt
1669877492_m
文章数
3
阅读量
70
作者其他文章
01
Flink State 状态原理解析
01
基于图遍历的Flink任务画布模式下零代码开发实现方案
添加企业微信
获取1V1专业服务
扫码关注
京东云开发者公众号